A Microfluidic Pump/Valve Inspired by Xylem Embolism and Transpiration in Plants
نویسندگان
چکیده
In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic "leaf" composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow) of the fluid is only 2∼3 s. This micropump/valve can be used as a "plug and play" fluid-driven unit. It has the potential to be used in many application fields.
منابع مشابه
The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants
Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress...
متن کاملXylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit.
• Motivated by the urgent need to understand how water stress-induced embolism limits the survival and recovery of plants during drought, the linkage between water-stress tolerance and xylem cavitation resistance was examined in one of the world's most drought resistant conifer genera, Callitris. • Four species were subjected to drought treatments of -5, -8 and -10 MPa for a period of 3-4 wk, a...
متن کاملHydraulic architecture of sugarcane in relation to patterns of water use during plant development"^
Hydraulic conductance was measured on leaf and stem segments excised from sugarcane plants at different stages of development. Maximum transpiration rates and leaf water potential (V'L) associated with maximum transpiration were also measured in intact plants as a function of plant size. Leaf specific hydraulic conductivity (LsJ and transpiration on a unit leaf area basis (E) were maximal in pl...
متن کاملFunctional analysis of embolism induced by air injection in Acer rubrum and Salix nigra
The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔP pit) had no effect on stomatal conductance or on branch-level sap flo...
متن کاملDevelopment of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress
Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tom...
متن کامل